Quasitriangular operator algebras
نویسندگان
چکیده
We give characterizations of quasitriangular operator algebras along the line Voiculescu's characterization quasidiagonal C⁎-algebras.
منابع مشابه
Local Quasitriangular Hopf Algebras
We find a new class of Hopf algebras, local quasitriangular Hopf algebras, which generalize quasitriangular Hopf algebras. Using these Hopf algebras, we obtain solutions of the Yang-Baxter equation in a systematic way. That is, the category of modules with finite cycles over a local quasitriangular Hopf algebra is a braided tensor category.
متن کاملQuasitriangular Structures on Cocommutative Hopf Algebras
The article is devoted to the describtion of quasitriangular structures (universal R-matrices) on cocommutative Hopf algebras. It is known that such structures are concentrated on finite dimensional Hopf subalgebras. In particular, quasitriangular structure on group algebra is defined by the pairs of normal inclusions of an finite abelian group and by invariant bimultiplicative form on it. The ...
متن کاملQuasitriangular (G-cograded) multiplier Hopf algebras
We put the known results on the antipode of a usual quasitriangular Hopf algebra into the framework of multiplier Hopf algebras. We illustrate with examples which can not be obtained by using classical Hopf algebras. The focus of the present paper lies on the class of the so-called G-cograded multiplier Hopf algebras. By doing so, we bring the results of quasitriangular Hopf group-coalgebras (a...
متن کاملKilling Form on Quasitriangular Hopf Algebras and Quantum Lie Algebras
The basics of quasitriangular Hopf algebras and quantum Lie algebras are briefly reviewed, and it is shown that their properties allow the introduction of a Killing form. For quantum Lie algebras, this leads to the definitions of a Killing metric and quadratic casimir. The specific case of Uq(su(N)) is examined in detail, where it is shown that many of the classical results are reproduced, and ...
متن کاملQuasitriangular and Differential Structures on Bicrossproduct Hopf Algebras
Let X = GM be a finite group factorisation. It is shown that the quantum double D(H) of the associated bicrossproduct Hopf algebra H = kM⊲◭k(G) is itself a bicrossproduct kX⊲◭k(Y ) associated to a group Y X, where Y = G×Mop. This provides a class of bicrossproduct Hopf algebras which are quasitriangular. We also construct a subgroup Y X associated to every order-reversing automorphism θ of X. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2023
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2023.127266